home *** CD-ROM | disk | FTP | other *** search
Text File | 1991-08-06 | 42.9 KB | 1,495 lines |
- C Radiative corrections to WW production by e+e-.
- Calculation of the contribution due to a fermion generation.
-
- C e+e- => WW. 1. W selfenergy, minimal subtraction terms.
- C e+e- => WW. 2. W selfenergy due to a fermion generation.
- Writes common file Self.
- C e+e- => WW. 3. Approximation for high energy of selfenergy correction.
- Uses common file Self.
- C e+e- => WW. 4. WWW vertex contribution due to a fermion generation.
- Writes common file Vertex.
- C e+e- => WW. 5. Approximation for high energy of WWW vertex correction.
- Uses common file Vertex.
- C e+e- => WW. 6. Approximation for large equal masses of selfenerg correction.
- Uses common file Self.
- C e+e- => WW. 7. Approximation for large equal masses of WWW vertex correction.
- Uses common file Vertex.
-
- *end
-
- C e+e- => WW. 1. W selfenergy, minimal subtraction terms.
-
- P ninput
- Read Standb.e
- NAMES{}
- VERT{}
- *fix
-
- Z IWW = SELF("W,"W)
-
- B i,Pi,N_
-
- Id,SELF(I1~,I2~)=
- DS(I1;-J1;J2;Sym;-J1;J2,TAP,3,(DIB(I1,J1,J2,I2)
- *DC("F,TFE,-1,J1,J2) ))
- + DS(I1;J3;-J3;I2;Sym;J3;-J3,TAP,3,(DIC(I1,J3,I2) ))
-
- Id,DIB(I1~,K1~,K2~,I2~)=
- VE3(I1,-K1,K2,*,mu,lA,cA,q,*,L1,1,c1,-K,*,L4,4,c4,Q)*
- VE3(K1,I2,-K2,*,L3,3,c3,K,*,nu,lB,cB,-q,*,L2,2,c2,-Q)*
- PROP(K1,-K1,*,L1,1,c1,K,*,L3,3,c3,-K)*
- PROP(K2,-K2,*,L2,2,c2,Q,*,L4,4,c4,-Q)
- Id,DIC(I1~,K1~,I2~)=
- VE4(I1,K1,-K1,I2,*,mu,*,L1,*,L2,*,nu)*
- PROP(K1,-K1,*,L1,1,c1,Q,*,L2,2,c2,-Q)
- Id,Compo,<X>,VE4,VE3,PROP
- *yep
- Id,VE4(Ax~,L1~,L2~,L3~,L4~)=Ax(L1,L2,L3,L4)
- Al,VE3(Ax~,L1~,l1~,c1~,K~,L2~,l2~,c2~,Q~,L3~,l3~,c3~,P~)=
- Ax(L1,l1,c1,K,L2,l2,c2,Q,L3,l3,c3,P)
- Al,PROP(Ax~,L4~,l4~,c4~,Q~,L3~,l3~,c3~,P~)=Ax(L4,l4,c4,L3,l3,c3,P)
- Id,Even,NOM
- Id,Commu,NOM
- Id,NOM(Q,M~)*NOM(K,M0~)=Bx(M,M0)
- Al,NOM(Q,M~)=Ax(M)
- Al,Multi,Sqrt2^-2=1/2
- Id,Gammas,"C
- *yep
- Id,Funct,K(L1~)=Q(L1)+q(L1)
- Al,Dotpr,K(L1~)=Q(L1)+q(L1)
- Al,K(L1~)=Q(L1)+q(L1)
- Id,All,Q,N,Fx
- *yep
- Id,Bx(M~,M0~)*Fx(L1~,L2~)=D(L1,L2)*B22(qDq,M,M0)+q(L1)*q(L2)*B21(qDq,M,M0)
- Al,Bx(M~,M0~)*Fx(L1~)=q(L1)*B1(qDq,M,M0)
- Al,Bx(M~,M0~)=B0(qDq,M,M0)
- *yep
- Id,Gammas,"A
- *yep
-
- Id,B22(x~,M~,m~)=(-0.5*Ax(m)+M**2*B0(x,M,m)
- -0.5*(x+m^2-M**2)*B1(x,M,m))/[1-N]
- Id,B21(x~,M~,m~)=-((0.5*N-1)*Ax(m)
- -0.5*N*(x+m^2-M**2)*B1(x,M,m)
- +M**2*B0(x,M,m) )/x/[1-N]
- Id,B1(x~,M~,m~)= (0.5*Ax(M)-0.5*Ax(m)
- -0.5*(x+m^2-M**2)*B0(x,M,m) )/x
-
-
- Id,Ax(PM)=0.
- Al,Ax(M~) = 2*i*Pi^2*M^2/N_ + i*Pi^2*M^2*(-1+Log(M))
-
- Id,Symme,B0,2,3
- Id,B0(u~,M~,m~) = - 2*N_^-1*i*Pi^2 + B0f(u,M,m)
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_=0
- Id,N=4
-
- Id,PM=0.
- Al,Multi,M0**2=M**2/C**2
- Al,[C^2-S^2]=2*C**2-1
- Al,[4/3*S^2-1]=1/3-4/3*C^2
- Al,[1-8/3*S^2]=8/3*C^2-5/3
- Al,[4*S^2-1]=3-4*C^2
-
- Id,Multi,C**2=1.-S**2
- Id,Multi,S**2=1.-C**2
- P output
- P stats
- *yep
- P input
- C Minimal subtraction terms.
- P ninput
-
- IF NOT B0f(u~,m,m) = B0HF(u)
- Id,B0f(u~,M~,m) = i*Pi^2
- + i*Pi^2*m^-4* ( - 3/2*u*M^2 + 1/6*u^2 )
- + i*Pi^2*m^-2 * ( - 1/2*u )
- - Log(m)*i*Pi^2
- + Log(m)*i*Pi^2*m^-4 * ( u*M^2 - M^4 )
- - Log(m)*i*Pi^2*m^-2*M^2
- + Log(M)*i*Pi^2*m^-4 * ( - u*M^2 + M^4 )
- + Log(M)*i*Pi^2*m^-2*M^2
- ENDIF
- Id,B0f(u~,M~,M0~) = i*Pi^2
- Id,Log(m) = x*Log(m)
- Id,Count,1,N_,-1,m,1,x,1,B0HF,10
- Id,x=1
- Id,M0=M/C
- B i,Pi,N_
- P output
- *yep
- P input
- C Zero weak mixing angle.
- Id,C^n~=1
- *end
-
- C e+e- => WW. 2. W selfenergy due to a fermion generation.
-
- P ninput
- Read Standb.e
- NAMES{}
- VERT{}
- *fix
-
- Common IWW
-
- Z IWW(mu,nu) = SELF("W,"W)
-
- B i,Pi,N_
-
- Id,SELF(I1~,I2~)=
- DS(I1;-J1;J2;Sym;-J1;J2,TAP,3,4,(DIB(I1,J1,J2,I2)
- *DC("F,TFE,-1,J1,J2) ))
- + DS(I1;J3;-J3;I2;Sym;J3;-J3,TAP,3,4,(DIC(I1,J3,I2) ))
-
- Id,DIB(I1~,K1~,K2~,I2~)=
- VE3(I1,-K1,K2,*,mu,lA,cA,q,*,L1,1,c1,-K,*,L4,4,c4,Q)*
- VE3(K1,I2,-K2,*,L3,3,c3,K,*,nu,lB,cB,-q,*,L2,2,c2,-Q)*
- PROP(K1,-K1,*,L1,1,c1,K,*,L3,3,c3,-K)*
- PROP(K2,-K2,*,L2,2,c2,Q,*,L4,4,c4,-Q)
- Id,DIC(I1~,K1~,I2~)=
- VE4(I1,K1,-K1,I2,*,mu,*,L1,*,L2,*,nu)*
- PROP(K1,-K1,*,L1,1,c1,Q,*,L2,2,c2,-Q)
- Id,Compo,<X>,VE4,VE3,PROP
- Id,VE4(Ax~,L1~,L2~,L3~,L4~)=Ax(L1,L2,L3,L4)
- Al,VE3(Ax~,L1~,l1~,c1~,K~,L2~,l2~,c2~,Q~,L3~,l3~,c3~,P~)=
- Ax(L1,l1,c1,K,L2,l2,c2,Q,L3,l3,c3,P)
- Al,PROP(Ax~,L4~,l4~,c4~,Q~,L3~,l3~,c3~,P~)=Ax(L4,l4,c4,L3,l3,c3,P)
- Id,Even,NOM
- Id,Commu,NOM
- Id,NOM(Q,M~)*NOM(K,M0~)=Bx(M,M0)
- Al,NOM(Q,M~)=Ax(M)
- Al,Multi,Sqrt2^-2=1/2
- Id,Gammas,"C
- *yep
- Id,Funct,K(L1~)=Q(L1)+q(L1)
- Al,Dotpr,K(L1~)=Q(L1)+q(L1)
- Al,K(L1~)=Q(L1)+q(L1)
- Id,All,Q,N,Fx
- *yep
- Id,Bx(M~,M0~)*Fx(L1~,L2~)=D(L1,L2)*B22(qDq,M,M0)+q(L1)*q(L2)*B21(qDq,M,M0)
- Al,Bx(M~,M0~)*Fx(L1~)=q(L1)*B1(qDq,M,M0)
- Al,Bx(M~,M0~)=B0(qDq,M,M0)
- *yep
- Id,Gammas,"A
- *yep
-
- Id,B22(x~,M~,m~)=(-0.5*Ax(m)+M**2*B0(x,M,m)
- -0.5*(x+m^2-M**2)*B1(x,M,m))/[1-N]
- Id,B21(x~,M~,m~)=-((0.5*N-1)*Ax(m)
- -0.5*N*(x+m^2-M**2)*B1(x,M,m)
- +M**2*B0(x,M,m) )/x/[1-N]
- Id,B1(x~,M~,m~)= (0.5*Ax(M)-0.5*Ax(m)
- -0.5*(x+m^2-M**2)*B0(x,M,m) )/x
-
-
- Id,Ax(PM)=0.
- Al,Ax(M~) = 2*i*Pi^2*M^2/N_ + i*Pi^2*M^2*(-1+Log(M))
-
- Id,Symme,B0,2,3
-
- Id,B0(u~,M~,m~) = - 2*i*Pi^2/N_ + B0f(u,M,m)
-
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_=0
- Id,N=4
-
- Id,PM=0.
- Al,Multi,M0**2=M**2/C**2
- Al,[C^2-S^2]=2*C**2-1
- Al,[4/3*S^2-1]=1/3-4/3*C^2
- Al,[1-8/3*S^2]=8/3*C^2-5/3
- Al,[4*S^2-1]=3-4*C^2
-
- Id,Multi,C**2=1.-S**2
- Id,Multi,S**2=1.-C**2
- C Zero weak mixing angle.
- Id,C^n~=1
- B i,Pi,N_
- P stats
- *begin
- Write Self
- *end
-
- C e+e- => WW. 3. Approximation for high energy of selfenergy correction.
- Uses output from 2.
-
- P ninput
-
- Read Standb.e
- NAMES{}
- Enter Self
- *fix
-
- Z IZZ=IWW(mu,nu)
-
- *yep
- B Wave,i,Pi,N_
- Id,q(al~)*q(be~)=Wave*q(al)*q(be) + qDq*D(al,be)
- Id,qDq^n~=(-1)^n*E^(2*n)
-
- Id,Md=0
- Al,Me=0
- Al,Mn=0
- Id,B0(u~,Me,m~)=B0(u,0,m)
- Al,B0(u~,Mn,m~)=B0(u,0,m)
- Al,B0(u~,Md,m~)=B0(u,0,m)
- Id,B0(u~,m~,Me)=B0(u,m,0)
- Al,B0(u~,m~,Mn)=B0(u,m,0)
- Al,B0(u~,m~,Md)=B0(u,m,0)
- *yep
- Id,B0f(qDq,0,0)=2*i*Pi^2 - i*Pi^2*Log(s)
- Al,B0f(pDp,Mu,0)=i*Pi^2 *(1-Log(Mu)+del/2-del^2/6)
- C Al,B0f(qDq,Mu,Mu)=
- i*Pi^2*(2-Log(s)-2*eps*Log(eps)+2*eps-2*eps^2*Log(eps)-eps^2)
- Id,eps=Mu^2/s
- Al,del=M^2/Mu^2
- Id,s^n~=E^(2*n)
- Al,Log(s)=Log(Mu)-Log(eps)
- C Id,Count,2,s,2,Mu,1,E,1,N_,-10,g0,10,Error,10
-
- *end
-
- C e+e- => WW. 4. WWW vertex contribution due to a fermion generation.
-
- P ninput
-
- Read Standb.e
- NAMES{}
- VERT{}
- *fix
-
- Common IWWpWm
-
- BLOCK DIV{}
- Id,Ax(u~)=-u^2*DEL
- Al,B0(u~,m~,M~)=DEL
- Al,B1(u~,m~,M~)=-1/2*DEL
- Al,B21(u~,m~,M~)=DEL/3
- Al,B0(u~,m~,M~)=-(u/12+m^2/4+M^2/4)*DEL
- Al,C24(m~,M~,M0~)=DEL/4
- Al,C35(m~,M~,M0~)=-DEL/6
- Al,C36(m~,M~,M0~)=-DEL/12
- IF NOT DEL
- Id,Addfa,0
- ENDIF
- *yep
- ENDBLOCK
-
- BLOCK KINE{}
- Id,Epf(al~,be~,ga~,de~)=0
- Id,pDep=0
- Al,kDek=0
- Al,qDep=-E*r/M
- Al,kDep=E*r/M
- Al,qDek=-E*r/M
- Al,pDek=E*r/M
- Al,epDek=-s/M^2/2+1
- Id,r^2=s/4-M^2
- Al,pDk=-s/2+M^2
- Al,qDq^n~=(-1)^n*s^n
- Al,qDp=s/2
- Al,qDk=s/2
- Al,pDp^n~=(-1)^n*M^(2*n)
- Al,kDk^n~=(-1)^n*M^(2*n)
- Al,Multi,E^2=s
- ENDBLOCK
-
- BLOCK KINE1{}
- Id,Epf(al~,be~,ga~,de~)=0
- Al,Me=0
- Al,Md=0
- Al,B0(u~,Me,m~)=B0(u,0,m)
- Al,B0(u~,Md,m~)=B0(u,0,m)
- Id,B0(u~,m~,Me)=B0(u,m,0)
- Al,B0(u~,m~,Md)=B0(u,m,0)
- Id,pDep=0
- Al,kDek=0
- Al,qDep=-E*r/Mx
- Al,kDep=E*r/Mx
- Al,qDek=-E*r/My
- Al,pDek=E*r/My
- Al,epDek= - s/2/Mx/My + 1/2*Mx/My + 1/2*Mx/My
- Id,r^2=s/4-1/2*Mx^2-1/2*My^2+(Mx^4+My^4-2*Mx^2*My^2)/4/s
- Al,pDk=-s/2+Mx^2/2+My^2/2
- Al,qDq^n~=(-1)^n*s^n
- Al,qDp=s/2+1/2*Mx^2-1/2*My^2
- Al,qDk=s/2-1/2*Mx^2+1/2*My^2
- Al,pDp^n~=(-1)^n*Mx^(2*n)
- Al,kDk^n~=(-1)^n*My^(2*n)
- Al,Multi,E^2=s
- ENDBLOCK
-
- BLOCK CASE{}
- Id,Mx^n~=M^n
- Al,My^n~=M^n
- Al,d1= 1 - 2*r/E
- Al,d2= 1 - 2*r/E
- Al,B0(kDk,m~,M~)=B0(pDp,m,M)
- ENDBLOCK
-
- BLOCK CASE2{}
- Id,Mx^n~=M^n
- Al,My^n~=M^n/C^n
- ENDBLOCK
-
- F C11,C12,C21,C22,C23,C24,C31,C32,C33,C34,C35,C36
- V ep,ek
- A r,s,d
-
- C Values of dot-products in q-restframe.
- q = (0,0,0,iE), p = (0,0,-r,-i*E/2), k = (0,0,r,-i*E/2)
- ep = (0,0,E/2,i*r)/M, ek = (0,0,-E/2,i*r)/M
- E^2/4 = r^2 + M^2, i.e. r^2 = E^2/4 - M^2
- (q,ep) = -E*r/M, (p,ep) =0, (k,ep) = E*r/M
- (q,ek) = -E*r/M, (p,ek) = E*r/M, (k,ek) = 0.
- (ep,ek) = (- E^2/4 - r^2)/M^2 = (- E^2/2 + M^2)/M^2 = - s/2/M^2 + 1
- (pq) = (kq) = E^2/2 = s/2
- (pk) = - r^2 - E^2/4 = - r^2 - s/4 = M^2 - s/2
- Det = pDp*kDk - (pDk)^2 = M^4 - (M^2 - E^2/2)^2 = - s*r^2
-
- In the general case, if not kDk=pDp then (with pDp=-Mx^2, kDk=-My^2):
- q = (0,0,0,iE), p = (0,0,-r,-i*E1/2), k = (0,0,r,-i*E2/2)
- ep = (0,0,E1,i*r)/Mx, ek = (0,0,-E2,i*r)/My
- r^2 = { (E^2 - Mx^2 - My^2)^2 - 4*Mx^2*My^2 } / (4*E^2)
- With (E1+E2)^2=E^2, E1^2 = r^2 + Mx^2, E2^2 = r^2 + My^2,
- E1*E2 = 1/2*(E^2 - Mx^2 - My^2 - 2*r^2);
- Dotproducts:
- (q,ep) = -E*r/Mx, (p,ep) =0, (k,ep) = - (q,ep) = E*r/Mx
- (q,ek) = -E*r/My, (p,ek) = - (q,ek) = E*r/My, (k,ek) = 0.
- (ep,ek) = (- E1*E2 - r^2)/Mx/My = ( - E^2/2 + 1/2*Mx^2 + 1/2*My^2)/Mx/My
- = - s/2/Mx/My + 1/2*Mx/My + 1/2*My/Mx
- (pk) = 1/2*(Mx^2 + My^2 - E^2) = 1/2*Mx^2 + 1/2*My^2 - s/2
- (pq) = E^2/2 + 1/2*Mx^2 - 1/2*My^2 = s/2 + 1/2*Mx^2 - 1/2*My^2
- (kq) = E^2/2 + 1/2*My^2 - 1/2*Mx^2 = s/2 + 1/2*My^2 - 1/2*Mx^2
- Since pDk = 1/2*(qDq - pDp - kDk) = - 1/2*(E^2 - Mx^2 -My^2) it follows
- Det = Mx^2*My^2 - pDk^2 = - E^2*r^2 = - s*r^2
- Note that there are really only two independent vectors in this case
- (longitudinal polarizations).
-
- Z IWWpWm(mu) = VERT("W,"U_,"U)*ep(al)*ek(be)
-
- B i,Pi,N_
-
- Id,VERT(K1~,K2~,K3~)=
- g0*16*Pi^4*i*
- VE3(K1,K2,K3,*,mu,lA,cA,q,*,al,lB,cB,p,*,be,lC,cC,k)
-
- +DS(K1;J3;-J1;TAP,3,4,(DS(K2;J1;-J2;TAP,3,4,(
- DIB(K1,K2,K3,J1,J2,J3)*DC("F,TFE,-1,J1,J2,J3) ))))
-
- +DS(K1;K2;-J4;J5;Sym;-J4;J5;TAP,3,4,(VIR1(K1,K2,K3,J4,J5) ))
-
- +DS(K2;K3;J6;-J7;Sym;J6;-J7;TAP,3,4,(VIR2(K1,K2,K3,J6,J7) ))
-
- +DS(K1;K3;-J8;J9;Sym;-J8;J9;TAP,3,4,(VIR3(K1,K2,K3,J8,J9) ))
-
- C External momenta: q (left in), p (upper right in), k (lower rigth in).
- Internal momenta:
- Q = loop momentum.
- P = Q + p
- K = Q - q
- Q1= Q - k
-
- C Triangle, K1 coming in from left, K2 in upper right, K3 in lower right.
- Inside, going clockwise:
- (3-vertex) 1 J1 5 (3-vertex) 2 J2 6 (3-vertex) 3 J3 4
- Internal momenta Q, P = Q + p, K = Q -q.
-
- Id,DIB(K1~,K2~,K3~,J1~,J2~,J3~)=
- VE3(K1,-J1,J3,*,mu,lA,cA,q,*,L1,1,c1,-Q,*,L4,4,c4,K)*
- VE3(K2,J1,-J2,*,al,lB,cB,p,*,L5,5,c5,Q,*,L2,2,c2,-P)*
- VE3(K3,J2,-J3,*,be,lC,cC,k,*,L6,6,c6,P,*,L3,3,c3,-K)*
- PROP(J1,-J1,*,L1,1,c1,Q,*,L5,5,c5,-Q)*
- PROP(J2,-J2,*,L2,2,c2,P,*,L6,6,c6,-P)*
- PROP(J3,-J3,*,L3,3,c3,K,*,L4,4,c4,-K)
-
- C Bubble in K3 = k line.
- (4-vertex) 1 J1 3 (3-vertex) 2 J2 4
- Internal momenta Q1 = Q - k and Q.
-
- Al,VIR1(K1~,K2~,K3~,J1~,J2~)=
- VE4(K1,K2,-J1,J2,*,mu,*,al,*,L1,*,L4)*
- VE3(K3,J1,-J2,*,be,lC,cC,k,*,L3,3,c3,Q1,*,L2,2,c2,-Q)*
- PROP(J1,-J1,*,L1,1,c1,Q1,*,L3,3,c3,-Q1)*
- PROP(J2,-J2,*,L2,2,c2,Q,*,L4,4,c4,-Q)
-
- C Bubble in K1 = q line.
- (3-vertex) 1 J1 3 (4-vertex) 2 J2 4
- Internal momenta Q and K = Q - q.
-
- Al,VIR2(K1~,K2~,K3~,J1~,J2~)=
- VE4(K2,K3,J1,-J2,*,al,*,be,*,L3,*,L2)*
- VE3(K1,-J1,J2,*,mu,lA,cA,q,*,L1,1,c1,-Q,*,L4,4,c4,K)*
- PROP(J1,-J1,*,L1,1,c1,Q,*,L3,3,c3,-Q)*
- PROP(J2,-J2,*,L2,2,c2,K,*,L4,4,c4,-K)
-
- C Bubble in K2 = p line.
- (4-vertex) 1 J1 3 (3-vertex) 2 J2 4
- Internal momenta Q and P = Q + p.
-
- Al,VIR3(K1~,K2~,K3~,J1~,J2~)=
- VE4(K1,K3,-J1,J2,*,mu,*,be,*,L1,*,L4)*
- VE3(K2,J1,-J2,*,al,lB,cB,p,*,L3,3,c3,Q,*,L2,2,c2,-P)*
- PROP(J1,-J1,*,L1,1,c1,Q,*,L3,3,c3,-Q)*
- PROP(J2,-J2,*,L2,2,c2,P,*,L4,4,c4,-P)
-
- Id,Anti,TAP
-
- Id,Compo,<X>,VE4,VE3,PROP
- Id,VE4(Ax~,L1~,L2~,L3~,L4~)=Ax(L1,L2,L3,L4)
- Al,VE3(Ax~,L1~,l1~,c1~,K~,L2~,l2~,c2~,Q~,L3~,l3~,c3~,P~)=
- Ax(L1,l1,c1,K,L2,l2,c2,Q,L3,l3,c3,P)
- Al,PROP(Ax~,L4~,l4~,c4~,Q~,L3~,l3~,c3~,P~)=Ax(L4,l4,c4,L3,l3,c3,P)
-
- Id,Sqrt2^-2=1/2
- Id,Even,NOM
- Id,Commu,NOM
- *yep
-
- C Cx(M,m,M0) = 1/( Q^2 + M^2) / ((Q+p)^2 + m^2) / ((Q-k)^2 + M0^2)
- Bx(P,M,m) = 1/( Q^2 + M^2) / ( P^2 + M^2) where P may be Q1 = Q-k,
- K = Q-q or P = Q+p.
-
- Id,Adiso,NOM(P,m~)*NOM(Q,M~)*NOM(K,M0~)=Cx(M,m,M0)
- Al,Adiso,NOM(Q,M~)*NOM(P~,m~) = Bx(P,M,m)
-
- Al,Multi,Sqrt2^-2=1/2
- Id,Gammas,"C
- *yep
- P stats
- Id,Funct,K(L1~)=Q(L1)-q(L1)
- Al,Dotpr,K(L1~)=Q(L1)-q(L1)
- Al,K(L1~)=Q(L1)-q(L1)
- Id,Funct,P(L1~)=Q(L1)+p(L1)
- Al,Dotpr,P(L1~)=Q(L1)+p(L1)
- Al,P(L1~)=Q(L1)+p(L1)
- Id,Funct,Q1(L1~)=Q(L1)-k(L1)
- Al,Dotpr,Q1(L1~)=Q(L1)-k(L1)
- Al,Q1(L1~)=Q(L1)-k(L1)
- Id,All,Q,N,Fx
- *yep
- Id,Bx(M~,M0~)*Fx(L1~,L2~)=D(L1,L2)*B22(qDq,M,M0)+q(L1)*q(L2)*B21(qDq,M,M0)
- Al,Bx(M~,M0~)*Fx(L1~)=q(L1)*B1(qDq,M,M0)
- Al,Bx(M~,M0~)=B0(qDq,M,M0)
- Id,Cx(m~,M~,M0~)*Fx(L1~,L2~,L3~) =
- p(L1)*p(L2)*p(L3)*C31(m,M,M0)
- + k(L1)*k(L2)*k(L3)*C32(m,M,M0)
- + (k(L1)*p(L2)*p(L3) + p(L1)*k(L2)*p(L3) + p(L1)*p(L2)*k(L3))*C33(m,M,M0)
- + (p(L1)*k(L2)*k(L3) + k(L1)*p(L2)*k(L3) + k(L1)*k(L2)*p(L3))*C34(m,M,M0)
- + (p(L1)*D(L2,L3) + p(L2)*D(L1,L3) + p(L3)*D(L1,L2))*C35(m,M,M0)
- + (k(L1)*D(L2,L3) + k(L2)*D(L1,L3) + k(L3)*D(L1,L2))*C36(m,M,M0)
- Al,Cx(m~,M~,M0~)*Fx(L1~,L2~) =
- p(L1)*p(L2)*C21(m,M,M0)
- + k(L1)*k(L2)*C22(m,M,M0)
- + (p(L1)*k(L2) + k(L1)*p(L2))*C23(m,M,M0)
- + D(L1,L2)*C24(m,M,M0)
- Al,Cx(m~,M~,M0~)*Fx(L1~) = p(L1)*C11(m,M,M0) + k(L1)*C12(m,M,M0)
- Al,Cx(m~,M~,M0~)=C0(m,M,M0)
-
- KINE{}
- CASE{}
- *yep
- Id,Gammas,"A
- KINE{}
- CASE{}
- *yep
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,Multi,N_^2=0
- IF N_
- Id,Ax(m~)*N_ = 2*i*Pi^2*m^2
- Al,B0(u~,m~,M~)*N_ = - 2*i*Pi^2
- Id,C24(m~,M~,M0~)*N_=-1/2*i*Pi^2
- Al,C35(m~,M~,M0~)*N_=1/3*i*Pi^2
- Al,C36(m~,M~,M0~)*N_=1/6*i*Pi^2
- Id,N_=0
- ENDIF
- Id,M0^n~=M^n/C^n
- Al,[C^2-S^2]=2*C**2-1
- Al,[4/3*S^2-1]=1/3-4/3*C^2
- Al,[1-8/3*S^2]=8/3*C^2-5/3
- Al,[4*S^2-1]=3-4*C^2
-
- Id,Multi,C**2=1.-S**2
- Id,Multi,S**2=1.-C**2
-
- C Simplification: neglect em.
- Id,C^n~=1
-
- KINE{}
- CASE{}
- *yep
- C q(mu) when multiplied with the e+e- part will give mE ~ 0.
- Id,q(al~)=0
- C For longitudinal polarizations the polarization vectors can be
- written in terms of p, k and q.
- Definition: d1 = 2*(E1 - r)/E, d2 = 2*(E2 - r)/E.
- Some useful expansions for large E:
- r = E/2*( 1 - Mx^2/E^2 - My^2/E^2 - 2*Mx^2*My^2/E^4 )
- 1/r = 2/E*( 1 + Mx^2/E^2 + My^2/E^2 + (4*Mx^2*My^2+Mx^4+My^4)/E^4 )
- d1 = 2*Mx^2/E^2 + 2*Mx^2*My^2/E^4
- d2 = 2*My^2/E^2 + 2*Mx^2*My^2/E^4
-
-
- Id,ep(al~)=-p(al)/Mx + E*d1/r/Mx/2*k(al)
- C + E*d1*d2/4/Mx/r*q(al)
- Al,ek(al~)=-k(al)/My + E*d2/r/My/2*p(al)
- C + E*d1*d2/4/My/r*q(al)
-
- Id,q(al~)=0
- Al,k(al~)=-p(al)
- KINE{}
- CASE{}
- Id,s=E^2
- P output
- *begin
- Write Vertex
- *end
-
- C e+e- => WW. 5. Approximation for high energy of WWW vertex correction.
- Uses output of 4.
-
- P ninput
-
- Read Standb.e
- NAMES{}
- Enter Vertex
- *fix
-
- BLOCK KINE{}
- Id,Epf(al~,be~,ga~,de~)=0
- Al,Me=0
- Al,Md=0
- Al,Mn=0
- Id,pDep=0
- Al,kDek=0
- Al,qDep=-E*r/M
- Al,kDep=E*r/M
- Al,qDek=-E*r/M
- Al,pDek=E*r/M
- Al,epDek=-s/M^2/2+1
- Id,r^2=s/4-M^2
- Al,pDk=-s/2+M^2
- Al,qDq^n~=(-1)^n*s^n
- Al,qDp=s/2
- Al,qDk=s/2
- Al,pDp^n~=(-1)^n*M^(2*n)
- Al,kDk^n~=(-1)^n*M^(2*n)
- Al,Multi,E^2=s
- ENDBLOCK
-
- BLOCK CASE{}
- Id,Mx^n~=M^n
- Al,My^n~=M^n
- Al,d2=d1
- Al,B0(kDk,m~,M~)=B0(pDp,m,M)
- ENDBLOCK
-
- Z IZWW = IWWpWm(mu)
-
- *yep
- Id,C0~(Md,Mx~,My~)=C0(0,Mx,My)
- Al,C0~(Mn,Mx~,My~)=C0(0,Mx,My)
- Id,C0~(Mx~,Md,My~)=C0(Mx,0,My)
- Al,C0~(Mx~,Mn,My~)=C0(Mx,0,My)
- Id,C0~(Mx~,My~,Md)=C0(Mx,My,0)
- Al,C0~(Mx~,My~,Mn)=C0(Mx,My,0)
-
- *yep
- Id,C11(Mx~,My~,Mx~) = Det^-1*C0(Mx,My,Mx)
- * ( 1/4*Mx^2*qDq - 1/4*My^2*qDq + 1/4*pDp*qDq )
- - C0(Mx,My,Mx) + B0(pDp,Mx,My)*Det^-1 * ( - 1/4*qDq )
- + B0(qDq,Mx,Mx)*Det^-1 * ( 1/4*qDq )
-
- Al,C12(Mx~,My~,Mx~) = Det^-1*C0(Mx,My,Mx)
- * ( - 1/4*Mx^2*qDq + 1/4*My^2*qDq - 1/4*pDp*qDq )
- + B0(pDp,Mx,My)*Det^-1 * ( 1/4*qDq )
- + B0(qDq,Mx,Mx)*Det^-1 * ( - 1/4*qDq )
-
- Al,C21(Mx~,My~,Mx~) = i*Pi^2*Det^-1
- * ( - 1/4*pDp )
- + Det^-2*C0(Mx,My,Mx)
- * ( - 3/4*Mx^2*My^2*pDp*qDq + 3/4*Mx^2*pDp^2*qDq + 3/8*Mx^4*pDp*qDq
- - 3/4*My^2*pDp^2*qDq + 3/8*My^4*pDp*qDq + 3/8*pDp^3*qDq )
- + Det^-1*C0(Mx,My,Mx)
- * ( 1/2*Mx^2*My^2 - 1/2*Mx^2*pDp - 1/2*Mx^2*qDq - 1/4*Mx^4
- + My^2*pDp + 1/2*My^2*qDq - 1/4*My^4 - 1/2*pDp*qDq - 1/4*pDp^2 )
- + C0(Mx,My,Mx)
- + Ax(Mx)*Det^-1
- * ( 1/4 - 1/8*pDp^-1*qDq )
- + Ax(My)*Det^-1
- * ( - 1/4 + 1/8*pDp^-1*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( - 3/8*Mx^2*pDp*qDq + 3/8*My^2*pDp*qDq - 3/8*pDp^2*qDq )
- + B0(pDp,Mx,My)*Det^-1
- * ( 1/2*Mx^2 - 1/8*Mx^2*pDp^-1*qDq - 1/2*My^2 + 1/8*My^2*pDp^-1*qDq
- + 1/2*pDp + 3/8*qDq )
- + B0(qDq,Mx,Mx)*Det^-2
- * ( 3/8*Mx^2*pDp*qDq - 3/8*My^2*pDp*qDq + 3/8*pDp^2*qDq )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( - 1/4*Mx^2 + 1/4*My^2 - 1/2*pDp - 3/8*qDq )
-
- Al,C22(Mx~,My~,Mx~) = i*Pi^2*Det^-1
- * ( - 1/4*pDp )
- + Det^-2*C0(Mx,My,Mx)
- * ( - 3/4*Mx^2*My^2*pDp*qDq + 3/4*Mx^2*pDp^2*qDq + 3/8*Mx^4*pDp*qDq
- - 3/4*My^2*pDp^2*qDq + 3/8*My^4*pDp*qDq + 3/8*pDp^3*qDq )
- + Det^-1*C0(Mx,My,Mx)
- * ( 1/2*Mx^2*My^2 - 1/2*Mx^2*pDp - 1/4*Mx^4 + My^2*pDp - 1/4*My^4
- - 1/4*pDp^2 )
- + Ax(Mx)*Det^-1
- * ( 1/4 - 1/8*pDp^-1*qDq )
- + Ax(My)*Det^-1
- * ( - 1/4 + 1/8*pDp^-1*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( - 3/8*Mx^2*pDp*qDq + 3/8*My^2*pDp*qDq - 3/8*pDp^2*qDq )
- + B0(pDp,Mx,My)*Det^-1
- * ( 1/2*Mx^2 - 1/8*Mx^2*pDp^-1*qDq - 1/2*My^2 + 1/8*My^2*pDp^-1*qDq
- + 1/2*pDp - 1/8*qDq )
- + B0(qDq,Mx,Mx)*Det^-2
- * ( 3/8*Mx^2*pDp*qDq - 3/8*My^2*pDp*qDq + 3/8*pDp^2*qDq )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( - 1/4*Mx^2 + 1/4*My^2 - 1/2*pDp + 1/8*qDq )
-
- Al,C23(Mx~,My~,Mx~) = i*Pi^2*Det^-1
- * ( - 1/4*pDp + 1/8*qDq )
- + Det^-2*C0(Mx,My,Mx)
- * ( 3/4*Mx^2*My^2*pDp*qDq - 3/4*Mx^2*pDp^2*qDq - 3/8*Mx^4*pDp*qDq
- + 3/4*My^2*pDp^2*qDq - 3/8*My^4*pDp*qDq - 3/8*pDp^3*qDq )
- + Det^-1*C0(Mx,My,Mx)
- * ( - Mx^2*My^2 + Mx^2*pDp + 1/4*Mx^2*qDq + 1/2*Mx^4 - 1/2*My^2*pDp
- - 1/2*My^2*qDq + 1/2*My^4 + 1/4*pDp*qDq + 1/2*pDp^2 )
- + 1/4*Ax(Mx)*Det^-1
- - 1/4*Ax(My)*Det^-1
- + B0(pDp,Mx,My)*Det^-2
- * ( 3/8*Mx^2*pDp*qDq - 3/8*My^2*pDp*qDq + 3/8*pDp^2*qDq )
- + B0(pDp,Mx,My)*Det^-1
- * ( - 1/4*Mx^2 + 1/4*My^2 - 1/4*pDp - 1/4*qDq )
- + B0(qDq,Mx,Mx)*Det^-2
- * ( - 3/8*Mx^2*pDp*qDq + 3/8*My^2*pDp*qDq - 3/8*pDp^2*qDq )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( 1/2*Mx^2 - 1/2*My^2 + 1/4*pDp + 1/4*qDq )
-
- Id,C24(Mx~,My~,Mx~) = 1/4*i*Pi^2
- + Det^-1*C0(Mx,My,Mx)
- * ( 1/4*Mx^2*My^2*qDq - 1/4*Mx^2*pDp*qDq - 1/8*Mx^4*qDq
- + 1/4*My^2*pDp*qDq - 1/8*My^4*qDq - 1/8*pDp^2*qDq )
- + C0(Mx,My,Mx)
- * ( - 1/2*My^2 )
- + B0(pDp,Mx,My)*Det^-1
- * ( 1/8*Mx^2*qDq - 1/8*My^2*qDq + 1/8*pDp*qDq )
- + 1/4*B0(qDq,Mx,Mx)
- + B0(qDq,Mx,Mx)*Det^-1
- * ( - 1/8*Mx^2*qDq + 1/8*My^2*qDq - 1/8*pDp*qDq ) + 0.
-
- Id,C31(Mx~,My~,Mx~) = i*Pi^2*Det^-2
- * ( - 5/48*Mx^2*pDp*qDq + 5/48*My^2*pDp*qDq - 5/48*pDp^2*qDq )
- + i*Pi^2*Det^-1
- * ( 1/6*Mx^2 - 1/24*Mx^2*pDp^-1*qDq + 1/12*My^2 - 1/24*My^2*pDp^-1
- *qDq + 2/3*pDp )
- + Det^-3*C0(Mx,My,Mx)
- * ( - 15/4*Mx^2*My^2*pDp^3*qDq + 15/8*Mx^2*My^4*pDp^2*qDq
- + 15/8*Mx^2*pDp^4*qDq - 15/8*Mx^4*My^2*pDp^2*qDq + 15/8*Mx^4*pDp^3
- *qDq + 5/8*Mx^6*pDp^2*qDq - 15/8*My^2*pDp^4*qDq + 15/8*My^4*pDp^3
- *qDq - 5/8*My^6*pDp^2*qDq + 5/8*pDp^5*qDq )
- + Det^-2*C0(Mx,My,Mx)
- * ( 3*Mx^2*My^2*pDp*qDq + 15/4*Mx^2*My^2*pDp^2 - 15/8*Mx^2*My^4*pDp
- - 3/16*Mx^2*My^4*qDq - 39/16*Mx^2*pDp^2*qDq - 15/8*Mx^2*pDp^3
- + 15/8*Mx^4*My^2*pDp + 3/16*Mx^4*My^2*qDq - 21/16*Mx^4*pDp*qDq
- - 15/8*Mx^4*pDp^2 - 5/8*Mx^6*pDp - 1/16*Mx^6*qDq + 45/16*My^2*pDp^2
- *qDq + 15/8*My^2*pDp^3 - 27/16*My^4*pDp*qDq - 15/8*My^4*pDp^2
- + 5/8*My^6*pDp + 1/16*My^6*qDq - 19/16*pDp^3*qDq - 5/8*pDp^4 )
- + Det^-1*C0(Mx,My,Mx)
- * ( - 3/2*Mx^2*My^2 + 3/2*Mx^2*pDp + 3/4*Mx^2*qDq + 3/4*Mx^4
- - 3*My^2*pDp - 3/4*My^2*qDq + 3/4*My^4 + 3/4*pDp*qDq + 3/4*pDp^2 )
- - C0(Mx,My,Mx)
- + Ax(Mx)*Det^-2
- * ( - 5/48*Mx^2*qDq + 5/48*My^2*qDq - 5/48*pDp*qDq )
- + Ax(Mx)*Det^-1
- * ( - 5/24 - 1/12*Mx^2*pDp^-2*qDq + 7/24*Mx^2*pDp^-1 + 1/12*My^2
- *pDp^-2*qDq - 7/24*My^2*pDp^-1 + 5/24*pDp^-1*qDq )
- + Ax(My)*Det^-2
- * ( 5/48*Mx^2*qDq - 5/48*My^2*qDq + 5/48*pDp*qDq )
- + Ax(My)*Det^-1
- * ( 11/24 + 1/12*Mx^2*pDp^-2*qDq - 7/24*Mx^2*pDp^-1 - 1/12*My^2*pDp^-2
- *qDq + 7/24*My^2*pDp^-1 - 7/24*pDp^-1*qDq )
- + B0(pDp,Mx,My)*Det^-3
- * ( 5/4*Mx^2*My^2*pDp^2*qDq - 5/4*Mx^2*pDp^3*qDq - 5/8*Mx^4*pDp^2
- *qDq + 5/4*My^2*pDp^3*qDq - 5/8*My^4*pDp^2*qDq - 5/8*pDp^4*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( - 5/4*Mx^2*My^2*pDp + 1/12*Mx^2*My^2*qDq + 25/24*Mx^2*pDp*qDq
- + 5/4*Mx^2*pDp^2 + 5/8*Mx^4*pDp - 1/24*Mx^4*qDq - 29/24*My^2*pDp
- *qDq - 5/4*My^2*pDp^2 + 5/8*My^4*pDp - 1/24*My^4*qDq + 13/12*pDp^2
- *qDq + 5/8*pDp^3 )
- + B0(pDp,Mx,My)*Det^-1
- * ( - 11/12*Mx^2 + 1/6*Mx^2*My^2*pDp^-2*qDq - 7/12*Mx^2*My^2*pDp^-1
- + 5/24*Mx^2*pDp^-1*qDq - 1/12*Mx^4*pDp^-2*qDq + 7/24*Mx^4*pDp^-1
- + 13/12*My^2 - 7/24*My^2*pDp^-1*qDq - 1/12*My^4*pDp^-2*qDq
- + 7/24*My^4*pDp^-1 - 29/24*pDp - 11/24*qDq )
- + B0(qDq,Mx,Mx)*Det^-3
- * ( - 5/4*Mx^2*My^2*pDp^2*qDq + 5/4*Mx^2*pDp^3*qDq + 5/8*Mx^4*pDp^2
- *qDq - 5/4*My^2*pDp^3*qDq + 5/8*My^4*pDp^2*qDq + 5/8*pDp^4*qDq )
- + B0(qDq,Mx,Mx)*Det^-2
- * ( 5/4*Mx^2*My^2*pDp + 1/8*Mx^2*My^2*qDq - 55/48*Mx^2*pDp*qDq
- - 5/4*Mx^2*pDp^2 - 5/8*Mx^4*pDp - 1/16*Mx^4*qDq + 21/16*My^2*pDp
- *qDq + 5/4*My^2*pDp^2 - 5/8*My^4*pDp - 1/16*My^4*qDq - 13/12*pDp^2
- *qDq - 5/8*pDp^3 )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( 17/24*Mx^2 - 5/8*My^2 + 29/24*pDp + 11/24*qDq )
-
- Id,C32(Mx~,My~,Mx~) = i*Pi^2*Det^-2
- * ( 5/48*Mx^2*pDp*qDq - 5/48*My^2*pDp*qDq + 5/48*pDp^2*qDq )
- + i*Pi^2*Det^-1
- * ( - 1/6*Mx^2 + 1/24*Mx^2*pDp^-1*qDq - 1/12*My^2 + 1/24*My^2*pDp^-1
- *qDq + 1/12*pDp )
- + Det^-3*C0(Mx,My,Mx)
- * ( 15/4*Mx^2*My^2*pDp^3*qDq - 15/8*Mx^2*My^4*pDp^2*qDq
- - 15/8*Mx^2*pDp^4*qDq + 15/8*Mx^4*My^2*pDp^2*qDq - 15/8*Mx^4*pDp^3
- *qDq - 5/8*Mx^6*pDp^2*qDq + 15/8*My^2*pDp^4*qDq - 15/8*My^4*pDp^3
- *qDq + 5/8*My^6*pDp^2*qDq - 5/8*pDp^5*qDq )
- + Det^-2*C0(Mx,My,Mx)
- * ( - 3/4*Mx^2*My^2*pDp*qDq - 15/4*Mx^2*My^2*pDp^2 + 15/8*Mx^2*My^4
- *pDp + 3/16*Mx^2*My^4*qDq + 3/16*Mx^2*pDp^2*qDq + 15/8*Mx^2*pDp^3
- - 15/8*Mx^4*My^2*pDp - 3/16*Mx^4*My^2*qDq + 3/16*Mx^4*pDp*qDq
- + 15/8*Mx^4*pDp^2 + 5/8*Mx^6*pDp + 1/16*Mx^6*qDq - 9/16*My^2*pDp^2
- *qDq - 15/8*My^2*pDp^3 + 9/16*My^4*pDp*qDq + 15/8*My^4*pDp^2
- - 5/8*My^6*pDp - 1/16*My^6*qDq + 1/16*pDp^3*qDq + 5/8*pDp^4 )
- + Ax(Mx)*Det^-2
- * ( 5/48*Mx^2*qDq - 5/48*My^2*qDq + 5/48*pDp*qDq )
- + Ax(Mx)*Det^-1
- * ( - 13/24 + 1/12*Mx^2*pDp^-2*qDq - 7/24*Mx^2*pDp^-1 - 1/12*My^2
- *pDp^-2*qDq + 7/24*My^2*pDp^-1 + 1/6*pDp^-1*qDq )
- + Ax(My)*Det^-2
- * ( - 5/48*Mx^2*qDq + 5/48*My^2*qDq - 5/48*pDp*qDq )
- + Ax(My)*Det^-1
- * ( 7/24 - 1/12*Mx^2*pDp^-2*qDq + 7/24*Mx^2*pDp^-1 + 1/12*My^2*pDp^-2
- *qDq - 7/24*My^2*pDp^-1 - 1/12*pDp^-1*qDq )
- + B0(pDp,Mx,My)*Det^-3
- * ( - 5/4*Mx^2*My^2*pDp^2*qDq + 5/4*Mx^2*pDp^3*qDq + 5/8*Mx^4*pDp^2
- *qDq - 5/4*My^2*pDp^3*qDq + 5/8*My^4*pDp^2*qDq + 5/8*pDp^4*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( 5/4*Mx^2*My^2*pDp - 1/12*Mx^2*My^2*qDq + 1/12*Mx^2*pDp*qDq
- - 5/4*Mx^2*pDp^2 - 5/8*Mx^4*pDp + 1/24*Mx^4*qDq + 1/12*My^2*pDp*qDq
- + 5/4*My^2*pDp^2 - 5/8*My^4*pDp + 1/24*My^4*qDq + 1/24*pDp^2*qDq
- - 5/8*pDp^3 )
- + B0(pDp,Mx,My)*Det^-1
- * ( - 7/12*Mx^2 - 1/6*Mx^2*My^2*pDp^-2*qDq + 7/12*Mx^2*My^2*pDp^-1
- + 1/6*Mx^2*pDp^-1*qDq + 1/12*Mx^4*pDp^-2*qDq - 7/24*Mx^4*pDp^-1
- + 5/12*My^2 - 1/12*My^2*pDp^-1*qDq + 1/12*My^4*pDp^-2*qDq
- - 7/24*My^4*pDp^-1 - 7/24*pDp + 1/12*qDq )
- + B0(qDq,Mx,Mx)*Det^-3
- * ( 5/4*Mx^2*My^2*pDp^2*qDq - 5/4*Mx^2*pDp^3*qDq - 5/8*Mx^4*pDp^2
- *qDq + 5/4*My^2*pDp^3*qDq - 5/8*My^4*pDp^2*qDq - 5/8*pDp^4*qDq )
- + B0(qDq,Mx,Mx)*Det^-2
- * ( - 5/4*Mx^2*My^2*pDp - 1/8*Mx^2*My^2*qDq + 1/48*Mx^2*pDp*qDq
- + 5/4*Mx^2*pDp^2 + 5/8*Mx^4*pDp + 1/16*Mx^4*qDq - 3/16*My^2*pDp*qDq
- - 5/4*My^2*pDp^2 + 5/8*My^4*pDp + 1/16*My^4*qDq - 1/24*pDp^2*qDq
- + 5/8*pDp^3 )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( 1/24*Mx^2 - 1/8*My^2 + 7/24*pDp - 1/12*qDq )
-
- Id,C33(Mx~,My~,Mx~) = i*Pi^2*Det^-2
- * ( 5/48*Mx^2*pDp*qDq - 5/48*My^2*pDp*qDq + 5/48*pDp^2*qDq )
- + i*Pi^2*Det^-1
- * ( - 1/12*Mx^2 + 1/6*My^2 + 1/3*pDp - 5/24*qDq )
- + Det^-3*C0(Mx,My,Mx)
- * ( 15/4*Mx^2*My^2*pDp^3*qDq - 15/8*Mx^2*My^4*pDp^2*qDq
- - 15/8*Mx^2*pDp^4*qDq + 15/8*Mx^4*My^2*pDp^2*qDq - 15/8*Mx^4*pDp^3
- *qDq - 5/8*Mx^6*pDp^2*qDq + 15/8*My^2*pDp^4*qDq - 15/8*My^4*pDp^3
- *qDq + 5/8*My^6*pDp^2*qDq - 5/8*pDp^5*qDq )
- + Det^-2*C0(Mx,My,Mx)
- * ( - 3*Mx^2*My^2*pDp*qDq - 15/4*Mx^2*My^2*pDp^2 + 15/8*Mx^2*My^4
- *pDp + 9/16*Mx^2*My^4*qDq + 33/16*Mx^2*pDp^2*qDq + 15/8*Mx^2*pDp^3
- - 15/8*Mx^4*My^2*pDp - 9/16*Mx^4*My^2*qDq + 21/16*Mx^4*pDp*qDq
- + 15/8*Mx^4*pDp^2 + 5/8*Mx^6*pDp + 3/16*Mx^6*qDq - 39/16*My^2*pDp^2
- *qDq - 15/8*My^2*pDp^3 + 27/16*My^4*pDp*qDq + 15/8*My^4*pDp^2
- - 5/8*My^6*pDp - 3/16*My^6*qDq + 15/16*pDp^3*qDq + 5/8*pDp^4 )
- + Det^-1*C0(Mx,My,Mx)
- * ( 5/2*Mx^2*My^2 - 2*Mx^2*pDp - 1/4*Mx^2*qDq - Mx^4 + 3/2*My^2*pDp
- + 3/4*My^2*qDq - 3/2*My^4 - 1/4*pDp*qDq - pDp^2 )
- + Ax(Mx)*Det^-2
- * ( 5/48*Mx^2*qDq - 5/48*My^2*qDq + 5/48*pDp*qDq )
- + Ax(Mx)*Det^-1
- * ( - 11/24 - 1/24*Mx^2*pDp^-1 + 1/24*My^2*pDp^-1 )
- + Ax(My)*Det^-2
- * ( - 5/48*Mx^2*qDq + 5/48*My^2*qDq - 5/48*pDp*qDq )
- + Ax(My)*Det^-1
- * ( 13/24 + 1/24*Mx^2*pDp^-1 - 1/24*My^2*pDp^-1 )
- + B0(pDp,Mx,My)*Det^-3
- * ( - 5/4*Mx^2*My^2*pDp^2*qDq + 5/4*Mx^2*pDp^3*qDq + 5/8*Mx^4*pDp^2
- *qDq - 5/4*My^2*pDp^3*qDq + 5/8*My^4*pDp^2*qDq + 5/8*pDp^4*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( 5/4*Mx^2*My^2*pDp + 1/6*Mx^2*My^2*qDq - 11/12*Mx^2*pDp*qDq
- - 5/4*Mx^2*pDp^2 - 5/8*Mx^4*pDp - 1/12*Mx^4*qDq + 13/12*My^2*pDp
- *qDq + 5/4*My^2*pDp^2 - 5/8*My^4*pDp - 1/12*My^4*qDq - 5/6*pDp^2
- *qDq - 5/8*pDp^3 )
- + B0(pDp,Mx,My)*Det^-1
- * ( 5/12*Mx^2 + 1/12*Mx^2*My^2*pDp^-1 - 1/24*Mx^4*pDp^-1
- - 7/12*My^2 - 1/24*My^4*pDp^-1 + 11/24*pDp + 1/4*qDq )
- + B0(qDq,Mx,Mx)*Det^-3
- * ( 5/4*Mx^2*My^2*pDp^2*qDq - 5/4*Mx^2*pDp^3*qDq - 5/8*Mx^4*pDp^2
- *qDq + 5/4*My^2*pDp^3*qDq - 5/8*My^4*pDp^2*qDq - 5/8*pDp^4*qDq )
- + B0(qDq,Mx,Mx)*Det^-2
- * ( - 5/4*Mx^2*My^2*pDp - 3/8*Mx^2*My^2*qDq + 49/48*Mx^2*pDp*qDq
- + 5/4*Mx^2*pDp^2 + 5/8*Mx^4*pDp + 3/16*Mx^4*qDq - 19/16*My^2*pDp
- *qDq - 5/4*My^2*pDp^2 + 5/8*My^4*pDp + 3/16*My^4*qDq + 5/6*pDp^2
- *qDq + 5/8*pDp^3 )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( - 7/8*Mx^2 + 9/8*My^2 - 11/24*pDp - 1/4*qDq )
-
- Id,C34(Mx~,My~,Mx~) = i*Pi^2*Det^-2
- * ( - 5/48*Mx^2*pDp*qDq + 5/48*My^2*pDp*qDq - 5/48*pDp^2*qDq )
- + i*Pi^2*Det^-1
- * ( 1/12*Mx^2 - 1/6*My^2 + 5/12*pDp - 1/24*qDq )
- + Det^-3*C0(Mx,My,Mx)
- * ( - 15/4*Mx^2*My^2*pDp^3*qDq + 15/8*Mx^2*My^4*pDp^2*qDq
- + 15/8*Mx^2*pDp^4*qDq - 15/8*Mx^4*My^2*pDp^2*qDq + 15/8*Mx^4*pDp^3
- *qDq + 5/8*Mx^6*pDp^2*qDq - 15/8*My^2*pDp^4*qDq + 15/8*My^4*pDp^3
- *qDq - 5/8*My^6*pDp^2*qDq + 5/8*pDp^5*qDq )
- + Det^-2*C0(Mx,My,Mx)
- * ( 9/4*Mx^2*My^2*pDp*qDq + 15/4*Mx^2*My^2*pDp^2 - 15/8*Mx^2*My^4
- *pDp - 9/16*Mx^2*My^4*qDq - 21/16*Mx^2*pDp^2*qDq - 15/8*Mx^2*pDp^3
- + 15/8*Mx^4*My^2*pDp + 9/16*Mx^4*My^2*qDq - 15/16*Mx^4*pDp*qDq
- - 15/8*Mx^4*pDp^2 - 5/8*Mx^6*pDp - 3/16*Mx^6*qDq + 27/16*My^2*pDp^2
- *qDq + 15/8*My^2*pDp^3 - 21/16*My^4*pDp*qDq - 15/8*My^4*pDp^2
- + 5/8*My^6*pDp + 3/16*My^6*qDq - 9/16*pDp^3*qDq - 5/8*pDp^4 )
- + Det^-1*C0(Mx,My,Mx)
- * ( - Mx^2*My^2 + 1/2*Mx^2*pDp + 1/4*Mx^4 - 3/2*My^2*pDp
- + 3/4*My^4 + 1/4*pDp^2 )
- + Ax(Mx)*Det^-2
- * ( - 5/48*Mx^2*qDq + 5/48*My^2*qDq - 5/48*pDp*qDq )
- + Ax(Mx)*Det^-1
- * ( - 7/24 + 1/24*Mx^2*pDp^-1 - 1/24*My^2*pDp^-1 + 1/8*pDp^-1*qDq )
- + Ax(My)*Det^-2
- * ( 5/48*Mx^2*qDq - 5/48*My^2*qDq + 5/48*pDp*qDq )
- + Ax(My)*Det^-1
- * ( 5/24 - 1/24*Mx^2*pDp^-1 + 1/24*My^2*pDp^-1 - 1/8*pDp^-1*qDq )
- + B0(pDp,Mx,My)*Det^-3
- * ( 5/4*Mx^2*My^2*pDp^2*qDq - 5/4*Mx^2*pDp^3*qDq - 5/8*Mx^4*pDp^2
- *qDq + 5/4*My^2*pDp^3*qDq - 5/8*My^4*pDp^2*qDq - 5/8*pDp^4*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( - 5/4*Mx^2*My^2*pDp - 1/6*Mx^2*My^2*qDq + 13/24*Mx^2*pDp*qDq
- + 5/4*Mx^2*pDp^2 + 5/8*Mx^4*pDp + 1/12*Mx^4*qDq - 17/24*My^2*pDp
- *qDq - 5/4*My^2*pDp^2 + 5/8*My^4*pDp + 1/12*My^4*qDq + 11/24*pDp^2
- *qDq + 5/8*pDp^3 )
- + B0(pDp,Mx,My)*Det^-1
- * ( - 5/12*Mx^2 - 1/12*Mx^2*My^2*pDp^-1 + 1/8*Mx^2*pDp^-1*qDq
- + 1/24*Mx^4*pDp^-1 + 7/12*My^2 - 1/8*My^2*pDp^-1*qDq + 1/24*My^4
- *pDp^-1 - 11/24*pDp + 1/8*qDq )
- + B0(qDq,Mx,Mx)*Det^-3
- * ( - 5/4*Mx^2*My^2*pDp^2*qDq + 5/4*Mx^2*pDp^3*qDq + 5/8*Mx^4*pDp^2
- *qDq - 5/4*My^2*pDp^3*qDq + 5/8*My^4*pDp^2*qDq + 5/8*pDp^4*qDq )
- + B0(qDq,Mx,Mx)*Det^-2
- * ( 5/4*Mx^2*My^2*pDp + 3/8*Mx^2*My^2*qDq - 31/48*Mx^2*pDp*qDq
- - 5/4*Mx^2*pDp^2 - 5/8*Mx^4*pDp - 3/16*Mx^4*qDq + 13/16*My^2*pDp
- *qDq + 5/4*My^2*pDp^2 - 5/8*My^4*pDp - 3/16*My^4*qDq - 11/24*pDp^2
- *qDq - 5/8*pDp^3 )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( 1/8*Mx^2 - 3/8*My^2 + 11/24*pDp - 1/8*qDq )
-
- Id,C35(Mx~,My~,Mx~) = - 7/36*i*Pi^2
- + i*Pi^2*Det^-1
- * ( 1/48*Mx^2*qDq - 1/48*My^2*qDq + 1/48*pDp*qDq )
- + Det^-2*C0(Mx,My,Mx)
- * ( 3/4*Mx^2*My^2*pDp^2*qDq - 3/8*Mx^2*My^4*pDp*qDq - 3/8*Mx^2*pDp^3
- *qDq + 3/8*Mx^4*My^2*pDp*qDq - 3/8*Mx^4*pDp^2*qDq - 1/8*Mx^6*pDp
- *qDq + 3/8*My^2*pDp^3*qDq - 3/8*My^4*pDp^2*qDq + 1/8*My^6*pDp*qDq
- - 1/8*pDp^4*qDq )
- + Det^-1*C0(Mx,My,Mx)
- * ( - 3/4*Mx^2*My^2*pDp - 3/8*Mx^2*My^2*qDq + 3/8*Mx^2*My^4
- + 1/4*Mx^2*pDp*qDq + 3/8*Mx^2*pDp^2 - 3/8*Mx^4*My^2 + 3/8*Mx^4*pDp
- + 1/8*Mx^4*qDq + 1/8*Mx^6 - 3/8*My^2*pDp*qDq - 3/8*My^2*pDp^2
- + 3/8*My^4*pDp + 1/4*My^4*qDq - 1/8*My^6 + 1/8*pDp^2*qDq
- + 1/8*pDp^3 )
- + C0(Mx,My,Mx)
- * ( 1/2*My^2 )
- + Ax(Mx)*Det^-1
- * ( 1/48*Mx^2*pDp^-1*qDq - 1/48*My^2*pDp^-1*qDq + 1/48*qDq )
- + Ax(My)*Det^-1
- * ( - 1/48*Mx^2*pDp^-1*qDq + 1/48*My^2*pDp^-1*qDq - 1/48*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( - 1/4*Mx^2*My^2*pDp*qDq + 1/4*Mx^2*pDp^2*qDq + 1/8*Mx^4*pDp*qDq
- - 1/4*My^2*pDp^2*qDq + 1/8*My^4*pDp*qDq + 1/8*pDp^3*qDq )
- + B0(pDp,Mx,My)*Det^-1
- * ( 1/4*Mx^2*My^2 - 1/24*Mx^2*My^2*pDp^-1*qDq - 1/4*Mx^2*pDp
- - 1/12*Mx^2*qDq - 1/8*Mx^4 + 1/48*Mx^4*pDp^-1*qDq + 1/4*My^2*pDp
- + 1/6*My^2*qDq - 1/8*My^4 + 1/48*My^4*pDp^-1*qDq - 5/48*pDp*qDq
- - 1/8*pDp^2 )
- - 1/6*B0(qDq,Mx,Mx)
- + B0(qDq,Mx,Mx)*Det^-2
- * ( 1/4*Mx^2*My^2*pDp*qDq - 1/4*Mx^2*pDp^2*qDq - 1/8*Mx^4*pDp*qDq
- + 1/4*My^2*pDp^2*qDq - 1/8*My^4*pDp*qDq - 1/8*pDp^3*qDq )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( - 1/4*Mx^2*My^2 + 1/4*Mx^2*pDp + 5/48*Mx^2*qDq + 1/8*Mx^4
- - 1/4*My^2*pDp - 3/16*My^2*qDq + 1/8*My^4 + 5/48*pDp*qDq
- + 1/8*pDp^2 )
-
- Id,C36(Mx~,My~,Mx~) = - 1/18*i*Pi^2
- + i*Pi^2*Det^-1
- * ( - 1/48*Mx^2*qDq + 1/48*My^2*qDq - 1/48*pDp*qDq )
- + Det^-2*C0(Mx,My,Mx)
- * ( - 3/4*Mx^2*My^2*pDp^2*qDq + 3/8*Mx^2*My^4*pDp*qDq + 3/8*Mx^2
- *pDp^3*qDq - 3/8*Mx^4*My^2*pDp*qDq + 3/8*Mx^4*pDp^2*qDq
- + 1/8*Mx^6*pDp*qDq - 3/8*My^2*pDp^3*qDq + 3/8*My^4*pDp^2*qDq
- - 1/8*My^6*pDp*qDq + 1/8*pDp^4*qDq )
- + Det^-1*C0(Mx,My,Mx)
- * ( 3/4*Mx^2*My^2*pDp + 1/8*Mx^2*My^2*qDq - 3/8*Mx^2*My^4
- - 3/8*Mx^2*pDp^2 + 3/8*Mx^4*My^2 - 3/8*Mx^4*pDp - 1/8*Mx^6
- + 1/8*My^2*pDp*qDq + 3/8*My^2*pDp^2 - 3/8*My^4*pDp - 1/8*My^4*qDq
- + 1/8*My^6 - 1/8*pDp^3 )
- + Ax(Mx)*Det^-1
- * ( - 1/48*Mx^2*pDp^-1*qDq + 1/48*My^2*pDp^-1*qDq - 1/48*qDq )
- + Ax(My)*Det^-1
- * ( 1/48*Mx^2*pDp^-1*qDq - 1/48*My^2*pDp^-1*qDq + 1/48*qDq )
- + B0(pDp,Mx,My)*Det^-2
- * ( 1/4*Mx^2*My^2*pDp*qDq - 1/4*Mx^2*pDp^2*qDq - 1/8*Mx^4*pDp*qDq
- + 1/4*My^2*pDp^2*qDq - 1/8*My^4*pDp*qDq - 1/8*pDp^3*qDq )
- + B0(pDp,Mx,My)*Det^-1
- * ( - 1/4*Mx^2*My^2 + 1/24*Mx^2*My^2*pDp^-1*qDq + 1/4*Mx^2*pDp
- - 1/24*Mx^2*qDq + 1/8*Mx^4 - 1/48*Mx^4*pDp^-1*qDq - 1/4*My^2*pDp
- - 1/24*My^2*qDq + 1/8*My^4 - 1/48*My^4*pDp^-1*qDq - 1/48*pDp*qDq
- + 1/8*pDp^2 )
- - 1/12*B0(qDq,Mx,Mx)
- + B0(qDq,Mx,Mx)*Det^-2
- * ( - 1/4*Mx^2*My^2*pDp*qDq + 1/4*Mx^2*pDp^2*qDq + 1/8*Mx^4*pDp*qDq
- - 1/4*My^2*pDp^2*qDq + 1/8*My^4*pDp*qDq + 1/8*pDp^3*qDq )
- + B0(qDq,Mx,Mx)*Det^-1
- * ( 1/4*Mx^2*My^2 - 1/4*Mx^2*pDp + 1/48*Mx^2*qDq - 1/8*Mx^4
- + 1/4*My^2*pDp + 1/16*My^2*qDq - 1/8*My^4 + 1/48*pDp*qDq
- - 1/8*pDp^2 )
-
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_*Ax(m~) = 2*i*Pi^2*m^2
- Al,N_*B0(u~,m~,M~) = - 2*i*Pi^2
- Id,N_=0
- Id,N=4
- Id,Symme,B0,2,3
- Id,Ax(m~)=Axf(m)*m^2
- KINE{}
- CASE{}
- *yep
- Id,Det^n~=(-1)^n*s^n*r^(2*n)
- C Id,Multi,r^4=s^2/16 - s*M^2/2 + M^4
- Id,Multi,r^2=s/4-M^2
-
- IF Multi,s^-1
- AND Multi,r^-2=4*fr2^-1
- Id,Ratio,fr2,s,fM2
- Id,fr2^n~=4^n*r^(2*n)
- Al,fM2^n~=4^n*M^(2*n)
- ENDIF
-
- IF s
- AND Multi,r^-2
- Id,s=4*r^2-4*M^2
- ENDIF
- *yep
- Id,Axf(m~)= 2*i*Pi^2/N_ + i*Pi^2*(-1+Log(m))
- Al,B0(u~,m~,M~) = - 2*i*Pi^2/N_ + B0f(u,m,M)
- Id,Count,x,r,1,s,2,M,1,M0,1,Mu,1,E,1,C0,-2
- IF x=1
- Id,Addfa,Error
- ENDIF
- B Error,g0,Alw,i,Pi,N_
- P output
- *yep
- Id,DEL=-2*i*Pi^2/N_
- Id,r= E/2 - Mx^2/E/2 - My^2/E/2
- C - Mx^2*My^2/E^3
- Al,Multi,r^-1 = 2/E + 2*Mx^2/E^3 + 2*My^2/E^3
- C + 2*(4*Mx^2*My^2+Mx^4+My^4)/E^5
- Al,d1=2*Mx^2/E^2
- C + 2*Mx^2*My^2/E^4
- Al,d2=2*My^2/E^2
- C + 2*Mx^2*My^2/E^4
- CASE{}
- Al,s=E^2
- Al,Multi,s^-1=E^-2
- Id,Count,2,r,1,s,2,Mu,1,E,1,C0,-2,N_,-10,g0,10,Error,10
- P output
- *yep
- C Limit of high energy, and also large Mu mass.
- Notations: Log2 = Log^2, eps=Mu^2/s and del=M^2/Mu^2
-
- Id,C0(Mu,0,Mu)=-i*Pi^2/s*(- Pi^2/6 + 1/2*Log2(eps)-eps*Log(eps)+eps)
- Al,C0(0,Mu,0)=-i*Pi^2/s*(- Pi^2 + Log2(eps) + 4*eps*Log(eps))
- Al,B0f(qDq,0,0)=2*i*Pi^2 - i*Pi^2*Log(s)
- Al,B0f(pDp,Mu,0)=i*Pi^2 *(1-Log(Mu)+del/2-del^2/6)
- Al,B0f(qDq,Mu,Mu)=
- i*Pi^2*(2-Log(s)-2*eps*Log(eps)+2*eps-2*eps^2*Log(eps)-eps^2)
- Al,B0f(pDp,Me,0)=2*i*Pi^2 - i*Pi^2*Log(M)
- Al,B0f(qDq,Me,Me)=2*i*Pi^2 - i*Pi^2*Log(s)
- Id,eps=Mu^2/s
- Al,del=M^2/Mu^2
- Id,s^n~=E^(2*n)
- Al,Log(s)=Log(Mu)-Log(eps)
- Id,Count,2,s,2,Mu,1,E,1,N_,-10,g0,10,Error,10
- IF NOT g0
- Id,Addfa,Alw*4*Pi
- ENDIF
- C Make coefficient of zeroeth order one.
- Id,Addfa,i/16/Pi^4*M^2/E^2
- IF Multi,E^-3
- Id,Addfa,0
- ENDIF
- *end
- C e+e- => WW. 6. Approximation for large equal masses of selfenerg correction.
- Uses common file Self.
-
- P ninput
-
- Read Standb.e
- NAMES{}
- Enter Self
- *fix
-
- Z IZZ=IWW(mu,nu)
-
- *yep
- B Wave,i,Pi,N_
- Id,q(al~)*q(be~)=Wave*q(al)*q(be) + qDq*D(al,be)
- Id,qDq^n~=(-1)^n*E^(2*n)
-
- Id,Md=Mx
- Al,Me=Mx
- Al,Mn=Mx
- Al,Mu=Mx
-
- Id,Ax(M~) = 2*i*Pi^2*M^2/N_ + i*Pi^2*M^2*(-1+Log(M))
-
- Id,Log(Mu)=Log(Mx)
- Al,Log(Md)=Log(Mx)
- Al,Log(Mn)=Log(Mx)
- Al,Log(Me)=Log(Mx)
-
- Id,B0f(u~,Me,m~)=B0f(u,Mx,m)
- Al,B0f(u~,Mn,m~)=B0f(u,Mx,m)
- Al,B0f(u~,Md,m~)=B0f(u,Mx,m)
- Al,B0f(u~,Mu,m~)=B0f(u,Mx,m)
- Id,B0f(u~,m~,Me)=B0f(u,m,Mx)
- Al,B0f(u~,m~,Mn)=B0f(u,m,Mx)
- Al,B0f(u~,m~,Md)=B0f(u,m,Mx)
- Al,B0f(u~,m~,Mu)=B0f(u,m,Mx)
- *yep
- Id,B0f(m~,Mx,Mx)= - i*Pi^2*Log(Mx)
- Id,s^n~=E^(2*n)
- Al,Log(s)=Log(Mx)-Log(eps)
-
- *end
-
- C e+e- => WW. 7. Approximation for large equal masses of WWW vertex correction.
- Uses common file Vertex.
- P ninput
-
- Read Standb.e
- NAMES{}
- Enter Vertex
- *fix
-
- BLOCK KINE{}
- Id,Epf(al~,be~,ga~,de~)=0
- Al,Me=0
- Al,Md=0
- Al,Mn=0
- Id,pDep=0
- Al,kDek=0
- Al,qDep=-E*r/M
- Al,kDep=E*r/M
- Al,qDek=-E*r/M
- Al,pDek=E*r/M
- Al,epDek=-s/M^2/2+1
- Id,r^2=s/4-M^2
- Al,pDk=-s/2+M^2
- Al,qDq^n~=(-1)^n*s^n
- Al,qDp=s/2
- Al,qDk=s/2
- Al,pDp^n~=(-1)^n*M^(2*n)
- Al,kDk^n~=(-1)^n*M^(2*n)
- Al,Multi,E^2=s
- ENDBLOCK
-
- BLOCK CASE{}
- Id,Mx^n~=M^n
- Al,My^n~=M^n
- Al,d2=d1
- Al,B0(kDk,m~,M~)=B0(pDp,m,M)
- ENDBLOCK
-
- Z IZWWMx = IWWpWm(mu)
-
- *yep
- Id,C0~(Mu,M~,m~)=C0(Mx,M,m)
- Al,C0~(Md,M~,m~)=C0(Mx,M,m)
- Al,C0~(Mn,M~,m~)=C0(Mx,M,m)
- Al,C0~(Me,M~,m~)=C0(Mx,M,m)
- Id,C0~(M~,Mu,m~)=C0(M,Mx,m)
- Al,C0~(M~,Md,m~)=C0(M,Mx,m)
- Al,C0~(M~,Mn,m~)=C0(M,Mx,m)
- Al,C0~(M~,Me,m~)=C0(M,Mx,m)
- Id,C0~(M~,m~,Mu)=C0(M,m,Mx)
- Al,C0~(M~,m~,Md)=C0(M,m,Mx)
- Al,C0~(M~,m~,Mn)=C0(M,m,Mx)
- Al,C0~(M~,m~,Me)=C0(M,m,Mx)
-
- *yep
-
- Id,C11(M1~,M2~,M3~) =
- + B0(pDp,M1,M1)*Det^-1
- * ( - 1/4*pDp - 1/2*pDk - 1/4*kDk )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( 1/4*pDp + 1/2*pDk + 1/4*kDk )
-
- - C0(M1,M2,M3)
-
- + C0(M1,M2,M3)*Det^-1
- * ( 1/2*pDp*pDk + 1/4*pDp*kDk + 1/4*pDp^2 )
-
- Id,C12(M1~,M2~,M3~) =
- + B0(pDp,M1,M1)*Det^-1
- * ( 1/4*pDp + 1/2*pDk + 1/4*kDk )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( - 1/4*pDp - 1/2*pDk - 1/4*kDk )
-
- + C0(M1,M2,M3)*Det^-1
- * ( - 1/2*pDp*pDk - 1/4*pDp*kDk - 1/4*pDp^2 )
-
- Id,C21(M1~,M2~,M3~) =
- + i*Pi^2*Det^-1
- * ( - 1/4*pDp )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( - 3/4*pDp^2*pDk - 3/8*pDp^2*kDk - 3/8*pDp^3 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( 7/8*pDp + 3/4*pDk + 3/8*kDk )
-
- + B0(qDq,M1,M1)*Det^-2
- * ( 3/4*pDp^2*pDk + 3/8*pDp^2*kDk + 3/8*pDp^3 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( - 7/8*pDp - 3/4*pDk - 3/8*kDk )
-
- + C0(M1,M2,M3)
-
- + C0(M1,M2,M3)*Det^-2
- * ( 3/4*pDp^3*pDk + 3/8*pDp^3*kDk + 3/8*pDp^4 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( 1/2*M1^2*pDp - pDp*pDk - 1/2*pDp*kDk - 3/4*pDp^2 )
-
- Id,C22(M1~,M2~,M3~) =
- + i*Pi^2*Det^-1
- * ( - 1/4*pDp )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( - 3/4*pDp^2*pDk - 3/8*pDp^2*kDk - 3/8*pDp^3 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( 3/8*pDp - 1/4*pDk - 1/8*kDk )
-
- + B0(qDq,M1,M1)*Det^-2
- * ( 3/4*pDp^2*pDk + 3/8*pDp^2*kDk + 3/8*pDp^3 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( - 3/8*pDp + 1/4*pDk + 1/8*kDk )
-
- + C0(M1,M2,M3)*Det^-2
- * ( 3/4*pDp^3*pDk + 3/8*pDp^3*kDk + 3/8*pDp^4 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( 1/2*M1^2*pDp - 1/4*pDp^2 )
-
- Id,C23(M1~,M2~,M3~) =
- + i*Pi^2*Det^-1
- * ( - 1/8*pDp + 1/4*pDk + 1/8*kDk )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( 3/4*pDp^2*pDk + 3/8*pDp^2*kDk + 3/8*pDp^3 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( - 1/2*pDp - 1/2*pDk - 1/4*kDk )
-
- + B0(qDq,M1,M1)*Det^-2
- * ( - 3/4*pDp^2*pDk - 3/8*pDp^2*kDk - 3/8*pDp^3 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( 1/2*pDp + 1/2*pDk + 1/4*kDk )
-
- + C0(M1,M2,M3)*Det^-2
- * ( - 3/4*pDp^3*pDk - 3/8*pDp^3*kDk - 3/8*pDp^4 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( 1/4*M1^2*pDp - 1/2*M1^2*pDk - 1/4*M1^2*kDk + 1/2*pDp*pDk
- + 1/4*pDp*kDk + 3/4*pDp^2 )
-
- Id,C24(M1~,M2~,M3~) =
- + 1/4*i*Pi^2
-
- + B0(pDp,M1,M1)*Det^-1
- * ( 1/4*pDp*pDk + 1/8*pDp*kDk + 1/8*pDp^2 )
-
- + 1/4*B0(qDq,M1,M1)
-
- + B0(qDq,M1,M1)*Det^-1
- * ( - 1/4*pDp*pDk - 1/8*pDp*kDk - 1/8*pDp^2 )
-
- + C0(M1,M2,M3)
- * ( - 1/2*M1^2 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( - 1/4*pDp^2*pDk - 1/8*pDp^2*kDk - 1/8*pDp^3 )
-
- Id,C31(M1~,M2~,M3~) =
- + i*Pi^2*Det^-2
- * ( - 5/24*pDp^2*pDk - 5/48*pDp^2*kDk - 5/48*pDp^3 )
-
- + i*Pi^2*Det^-1
- * ( 1/6*M1^2 - 1/6*M1^2*pDp^-1*pDk - 1/12*M1^2*pDp^-1*kDk
- + 2/3*pDp )
-
- + Ax(M1)*Det^-1
- * ( 1/6 - 1/6*pDp^-1*pDk - 1/12*pDp^-1*kDk )
-
- + B0(pDp,M1,M1)*Det^-3
- * ( - 5/4*pDp^4*pDk - 5/8*pDp^4*kDk - 5/8*pDp^5 )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( - 1/3*M1^2*pDp*pDk - 1/6*M1^2*pDp*kDk - 1/6*M1^2*pDp^2
- + 13/6*pDp^2*pDk + 13/12*pDp^2*kDk + 41/24*pDp^3 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( 1/12*M1^2 - 1/6*M1^2*pDp^-1*pDk - 1/12*M1^2*pDp^-1*kDk
- - 5/3*pDp - 11/12*pDk - 11/24*kDk )
-
- + B0(qDq,M1,M1)*Det^-3
- * ( 5/4*pDp^4*pDk + 5/8*pDp^4*kDk + 5/8*pDp^5 )
-
- + B0(qDq,M1,M1)*Det^-2
- * ( 1/3*M1^2*pDp*pDk + 1/6*M1^2*pDp*kDk + 1/6*M1^2*pDp^2
- - 13/6*pDp^2*pDk - 13/12*pDp^2*kDk - 41/24*pDp^3 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( 1/12*M1^2 + 5/3*pDp + 11/12*pDk + 11/24*kDk )
-
- - C0(M1,M2,M3)
-
- + C0(M1,M2,M3)*Det^-3
- * ( 5/4*pDp^5*pDk + 5/8*pDp^5*kDk + 5/8*pDp^6 )
-
- + C0(M1,M2,M3)*Det^-2
- * ( 3/4*M1^2*pDp^2*pDk + 3/8*M1^2*pDp^2*kDk + 3/8*M1^2*pDp^3
- - 19/8*pDp^3*pDk - 19/16*pDp^3*kDk - 29/16*pDp^4 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( - 3/2*M1^2*pDp + 3/2*pDp*pDk + 3/4*pDp*kDk + 3/2*pDp^2 )
-
- Id,C32(M1~,M2~,M3~) =
- + i*Pi^2*Det^-2
- * ( 5/24*pDp^2*pDk + 5/48*pDp^2*kDk + 5/48*pDp^3 )
-
- + i*Pi^2*Det^-1
- * ( - 1/6*M1^2 + 1/6*M1^2*pDp^-1*pDk + 1/12*M1^2*pDp^-1*kDk
- + 1/12*pDp )
-
- + Ax(M1)*Det^-1
- * ( - 1/6 + 1/6*pDp^-1*pDk + 1/12*pDp^-1*kDk )
-
- + B0(pDp,M1,M1)*Det^-3
- * ( 5/4*pDp^4*pDk + 5/8*pDp^4*kDk + 5/8*pDp^5 )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( 1/3*M1^2*pDp*pDk + 1/6*M1^2*pDp*kDk + 1/6*M1^2*pDp^2
- + 1/12*pDp^2*pDk + 1/24*pDp^2*kDk - 7/12*pDp^3 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( - 1/12*M1^2 + 1/6*M1^2*pDp^-1*pDk + 1/12*M1^2*pDp^-1*kDk
- - 5/24*pDp + 1/6*pDk + 1/12*kDk )
-
- + B0(qDq,M1,M1)*Det^-3
- * ( - 5/4*pDp^4*pDk - 5/8*pDp^4*kDk - 5/8*pDp^5 )
-
- + B0(qDq,M1,M1)*Det^-2
- * ( - 1/3*M1^2*pDp*pDk - 1/6*M1^2*pDp*kDk - 1/6*M1^2*pDp^2
- - 1/12*pDp^2*pDk - 1/24*pDp^2*kDk + 7/12*pDp^3 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( - 1/12*M1^2 + 5/24*pDp - 1/6*pDk - 1/12*kDk )
-
- + C0(M1,M2,M3)*Det^-3
- * ( - 5/4*pDp^5*pDk - 5/8*pDp^5*kDk - 5/8*pDp^6 )
-
- + C0(M1,M2,M3)*Det^-2
- * ( - 3/4*M1^2*pDp^2*pDk - 3/8*M1^2*pDp^2*kDk - 3/8*M1^2*pDp^3
- + 1/8*pDp^3*pDk + 1/16*pDp^3*kDk + 11/16*pDp^4 )
-
- Id,C33(M1~,M2~,M3~) =
- + i*Pi^2*Det^-2
- * ( 5/24*pDp^2*pDk + 5/48*pDp^2*kDk + 5/48*pDp^3 )
-
- + i*Pi^2*Det^-1
- * ( 1/12*M1^2 + 1/8*pDp - 5/12*pDk - 5/24*kDk )
-
- + 1/12*Ax(M1)*Det^-1
-
- + B0(pDp,M1,M1)*Det^-3
- * ( 5/4*pDp^4*pDk + 5/8*pDp^4*kDk + 5/8*pDp^5 )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( 1/3*M1^2*pDp*pDk + 1/6*M1^2*pDp*kDk + 1/6*M1^2*pDp^2
- - 5/3*pDp^2*pDk - 5/6*pDp^2*kDk - 35/24*pDp^3 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( - 1/6*M1^2 + 17/24*pDp + 1/2*pDk + 1/4*kDk )
-
- + B0(qDq,M1,M1)*Det^-3
- * ( - 5/4*pDp^4*pDk - 5/8*pDp^4*kDk - 5/8*pDp^5 )
-
- + B0(qDq,M1,M1)*Det^-2
- * ( - 1/3*M1^2*pDp*pDk - 1/6*M1^2*pDp*kDk - 1/6*M1^2*pDp^2
- + 5/3*pDp^2*pDk + 5/6*pDp^2*kDk + 35/24*pDp^3 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( 1/4*M1^2 - 17/24*pDp - 1/2*pDk - 1/4*kDk )
-
- + C0(M1,M2,M3)*Det^-3
- * ( - 5/4*pDp^5*pDk - 5/8*pDp^5*kDk - 5/8*pDp^6 )
-
- + C0(M1,M2,M3)*Det^-2
- * ( - 3/4*M1^2*pDp^2*pDk - 3/8*M1^2*pDp^2*kDk - 3/8*M1^2*pDp^3
- + 15/8*pDp^3*pDk + 15/16*pDp^3*kDk + 25/16*pDp^4 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( M1^2*pDk + 1/2*M1^2*kDk - 1/2*pDp*pDk - 1/4*pDp*kDk
- - 5/4*pDp^2 )
-
- Id,C34(M1~,M2~,M3~) =
- + i*Pi^2*Det^-2
- * ( - 5/24*pDp^2*pDk - 5/48*pDp^2*kDk - 5/48*pDp^3 )
-
- + i*Pi^2*Det^-1
- * ( - 1/12*M1^2 + 3/8*pDp - 1/12*pDk - 1/24*kDk )
-
- - 1/12*Ax(M1)*Det^-1
-
- + B0(pDp,M1,M1)*Det^-3
- * ( - 5/4*pDp^4*pDk - 5/8*pDp^4*kDk - 5/8*pDp^5 )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( - 1/3*M1^2*pDp*pDk - 1/6*M1^2*pDp*kDk - 1/6*M1^2*pDp^2
- + 11/12*pDp^2*pDk + 11/24*pDp^2*kDk + 13/12*pDp^3 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( 1/6*M1^2 - 1/3*pDp + 1/4*pDk + 1/8*kDk )
-
- + B0(qDq,M1,M1)*Det^-3
- * ( 5/4*pDp^4*pDk + 5/8*pDp^4*kDk + 5/8*pDp^5 )
-
- + B0(qDq,M1,M1)*Det^-2
- * ( 1/3*M1^2*pDp*pDk + 1/6*M1^2*pDp*kDk + 1/6*M1^2*pDp^2
- - 11/12*pDp^2*pDk - 11/24*pDp^2*kDk - 13/12*pDp^3 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( - 1/4*M1^2 + 1/3*pDp - 1/4*pDk - 1/8*kDk )
-
- + C0(M1,M2,M3)*Det^-3
- * ( 5/4*pDp^5*pDk + 5/8*pDp^5*kDk + 5/8*pDp^6 )
-
- + C0(M1,M2,M3)*Det^-2
- * ( 3/4*M1^2*pDp^2*pDk + 3/8*M1^2*pDp^2*kDk + 3/8*M1^2*pDp^3
- - 9/8*pDp^3*pDk - 9/16*pDp^3*kDk - 19/16*pDp^4 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( - M1^2*pDp + 1/4*pDp^2 )
-
- Id,C35(M1~,M2~,M3~) =
- - 7/36*i*Pi^2
-
- + i*Pi^2*Det^-1
- * ( 1/24*pDp*pDk + 1/48*pDp*kDk + 1/48*pDp^2 )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( 1/4*pDp^3*pDk + 1/8*pDp^3*kDk + 1/8*pDp^4 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( 1/12*M1^2*pDp + 1/6*M1^2*pDk + 1/12*M1^2*kDk - 5/24*pDp*pDk
- - 5/48*pDp*kDk - 11/48*pDp^2 )
-
- - 1/6*B0(qDq,M1,M1)
-
- + B0(qDq,M1,M1)*Det^-2
- * ( - 1/4*pDp^3*pDk - 1/8*pDp^3*kDk - 1/8*pDp^4 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( - 1/12*M1^2*pDp - 1/6*M1^2*pDk - 1/12*M1^2*kDk + 5/24*pDp*pDk
- + 5/48*pDp*kDk + 11/48*pDp^2 )
-
- + C0(M1,M2,M3)
- * ( 1/2*M1^2 )
-
- + C0(M1,M2,M3)*Det^-2
- * ( - 1/4*pDp^4*pDk - 1/8*pDp^4*kDk - 1/8*pDp^5 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( - 1/4*M1^2*pDp*pDk - 1/8*M1^2*pDp*kDk - 1/8*M1^2*pDp^2
- + 1/4*pDp^2*pDk + 1/8*pDp^2*kDk + 1/4*pDp^3 )
-
- Id,C36(M1~,M2~,M3~) =
- - 1/18*i*Pi^2
-
- + i*Pi^2*Det^-1
- * ( - 1/24*pDp*pDk - 1/48*pDp*kDk - 1/48*pDp^2 )
-
- + B0(pDp,M1,M1)*Det^-2
- * ( - 1/4*pDp^3*pDk - 1/8*pDp^3*kDk - 1/8*pDp^4 )
-
- + B0(pDp,M1,M1)*Det^-1
- * ( - 1/12*M1^2*pDp - 1/6*M1^2*pDk - 1/12*M1^2*kDk - 1/24*pDp*pDk
- - 1/48*pDp*kDk + 5/48*pDp^2 )
-
- - 1/12*B0(qDq,M1,M1)
-
- + B0(qDq,M1,M1)*Det^-2
- * ( 1/4*pDp^3*pDk + 1/8*pDp^3*kDk + 1/8*pDp^4 )
-
- + B0(qDq,M1,M1)*Det^-1
- * ( 1/12*M1^2*pDp + 1/6*M1^2*pDk + 1/12*M1^2*kDk + 1/24*pDp*pDk
- + 1/48*pDp*kDk - 5/48*pDp^2 )
-
- + C0(M1,M2,M3)*Det^-2
- * ( 1/4*pDp^4*pDk + 1/8*pDp^4*kDk + 1/8*pDp^5 )
-
- + C0(M1,M2,M3)*Det^-1
- * ( 1/4*M1^2*pDp*pDk + 1/8*M1^2*pDp*kDk + 1/8*M1^2*pDp^2
- - 1/8*pDp^3 ) + 0.
-
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_*Ax(m~) = 2*i*Pi^2*m^2
- Al,N_*B0(u~,m~,M~) = - 2*i*Pi^2
- Id,N_=0
- Id,N=4
- Id,Symme,B0,2,3
- Id,Ax(m~)=Axf(m)*m^2
-
- Id,r^2=s/4-M^2
- Al,pDk=-s/2+M^2
- Al,qDq^n~=(-1)^n*s^n
- Al,qDp=s/2
- Al,qDk=s/2
- Al,pDp^n~=(-1)^n*M^(2*n)
- Al,kDk^n~=(-1)^n*M^(2*n)
- Al,Multi,E^2=s
- *yep
- B i,Pi,N_
- Id,Det^n~=(-1)^n*s^n*r^(2*n)
- Id,Axf(m~)= 2*i*Pi^2/N_ + i*Pi^2*(-1+Log(m))
- Al,B0(u~,Mx,Mx) = - 2*i*Pi^2/N_ - i*Pi^2*Log(Mx)
- *end
- ə